If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2=-5w
We move all terms to the left:
3w^2-(-5w)=0
We get rid of parentheses
3w^2+5w=0
a = 3; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·3·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*3}=\frac{-10}{6} =-1+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*3}=\frac{0}{6} =0 $
| 12=6x-84 | | 60x+20(60)=50x+50•60 | | (1.055^x)=4 | | 100d^2-76=68 | | 5n-4=-15 | | 1.055^x=4 | | 26-5p=18-4p | | ∠A=5x−15 | | ((63x)+65(100-x))/100=63.55 | | x+4/x=4 | | 9b+3=10b | | w^2-7-8=0 | | 9p-3+p=7 | | -10+4c=2c | | (63x)+65(100-x)=63.55 | | 121z^2=25 | | 121z^2=2 | | 9p-3=p=7 | | 4j^2-144=0 | | 5u+8=-2 | | 3(2x=12)=-2(x-4)+x | | x+5x=72000 | | -10+7a=4 | | 5-t/2-3t/5=2+t+1/3 | | C=2•3.15r | | 10x+1=3(3x+6) | | (b)/(6)=8 | | -6x+2x=-2 | | 10^x=5.4 | | 25=(.15x)+x | | 19=v/5+11 | | 2x*3x*x=x |